2026年1月14日 星期三

【 A. I. Artificial Intelligence 產業 】蘋果的人工智慧戰略正在發生重大轉變(Strategically, the partnership highlights how central AI assistants have become to future platforms):透過整合Google的Gemini模型,蘋果顯示下一代Siri將比用戶以往見過的任何版本更先進。 。Nvidia and Eli Lilly: 克萊默Cramer認為,先進運算與生物學的融合正在重塑藥物研發的經濟格局。 截至2026年,英偉達和禮來公司的股價表現落後於市場對人工智慧的普遍熱情。Alphabet 和 NVIDIA 正在深化雙方長達十年的合作關係,以推動智能體人工智慧、機器人、藥物研發等領域的發展。China has restricted purchases of Nvidia's H200 AI chips Nvidia CEO sends strong message on Taiwan Semiconductor What Jensen Huang said touches the heart of the AI buildout. Jensen Huang Says Accelerated Computing Has Replaced CPUs at the Core of Supercomputing 黃仁勳在美沙投資論壇上發表講話 份額從10%增長到近90%,標誌著高效能運算和資料密集型雲端工作負載已徹底從通用CPU轉向專用加速運算,這是一個清晰的轉折點。 ai companies issues 人工智慧公司和實施人工智慧的企業在倫理、財務、技術和營運等各個領域都面臨許多挑戰。這些挑戰涵蓋了企業專案的高失敗率以及大規模的社會議題。 (AI教主?)黃仁勳 (2) Nvidia 要求中國客戶預付H200人工智慧晶片的全部款項,且不予退款或更改訂單20250109。市值曾高達 $5 Trillion as It Consolidates Power in A.I. Boom


++++++

蘋果的人工智慧戰略正在發生重大轉變。透過整合Google的Gemini模型,蘋果顯示下一代Siri將比用戶以往見過的任何版本更先進。


Gemini旨在實現更深層的推理、更強的上下文感知和更複雜的語言理解——這些能力有望顯著縮小Siri與當今領先的人工智慧助理之間的差距。


此舉反映了整個科技產業的普遍趨勢:隨著人工智慧開發成本的不斷攀升和運算需求的日益增長,合作變得至關重要。即使是規模最大的公司也不再完全獨立開發。


對使用者而言,這項變更意味著在蘋果設備上可以體驗到更自然的對話、更智慧的任務處理以及更高的工作效率,同時蘋果也將繼續強調隱私保護和系統級整合。


從策略角度來看,這項合作凸顯了人工智慧助理在未來平台中的核心地位,它們正從簡單的語音工具轉變為融入日常生活的智慧數位夥伴。


A major shift is unfolding inside Apple’s AI strategy. By integrating Google’s Gemini models, Apple is signaling that the next generation of Siri will be far more advanced than anything users have seen before.
Gemini is designed for deeper reasoning, stronger context awareness, and complex language understanding—capabilities that could significantly close the gap between Siri and today’s leading AI assistants.
This move reflects a broader trend across the tech industry, where collaboration is becoming essential as AI development grows more expensive and computationally demanding. Even the largest companies are no longer building entirely alone.
For users, the change could mean more natural conversations, smarter task handling, and improved productivity across Apple devices, while Apple continues to emphasize privacy and system-level integration.
Strategically, the partnership highlights how central AI assistants have become to future platforms, transforming from simple voice tools into intelligent digital companions embedded across daily life.

WWWW

吉姆·克萊默敦促投資者忽略短期市場波動,並關注他所說的醫療保健創新領域的重大轉變。他強調英偉達和禮來公司的合作是一項變革性舉措,但華爾街卻對此大多視而不見。


克萊默將此次合作描述為一項價值10億美元的投資,旨在大幅加快藥物研發速度。其目標是在加速研發關鍵新藥的同時,將研發成本降低高達70%。


這項合作的核心是英偉達的「實驗室在環」模型,該模型將大部分藥物測試從實體實驗室轉移到軟體模擬環境。這種轉變使研究人員能夠更早發現問題,並在更短的時間內進行更多實驗。


克萊默表示,這種方法可以將研究效率提高近100倍。人工智慧不再只是輔助工具,而是成為藥物研發的核心基礎設施。


儘管機會龐大,克萊默指出,市場的焦點卻在其他方面。他認為,投資人被每日財報反應以及銀行和零售股的短期波動所分散了注意力。


此次合作仰賴英偉達的下一代運算架構及其BioNeMo平台。克萊默認為,先進運算與生物學的融合正在重塑藥物研發的經濟格局。


截至2026年,英偉達和禮來公司的股價表現落後於市場對人工智慧的普遍熱情。克萊默認為,這種脫節可能為耐心投資者創造長期投資機會。

Jim Cramer is urging investors to look past short term market noise and focus on what he calls a major shift in healthcare innovation. He highlighted the partnership between Nvidia and Eli Lilly as a transformative effort that Wall Street is largely ignoring.
Cramer described the collaboration as a $1 billion commitment to dramatically speed up drug discovery. The goal is to cut development costs by as much as 70 percent while accelerating the creation of critical new medicines.
At the center of the effort is Nvidia’s lab in the loop model, which moves large portions of drug testing from physical labs into software simulations. This shift allows researchers to identify failures earlier and run far more experiments in less time.
Cramer said the approach could increase research throughput by nearly 100 times. Instead of AI serving as a support tool, it becomes core infrastructure for pharmaceutical development.
Despite the scale of the opportunity, Cramer noted that markets are focused elsewhere. He argued investors are distracted by daily earnings reactions and short term moves in bank and retail stocks.
The partnership relies on Nvidia’s next generation computing architecture and its BioNeMo platform. Cramer believes this convergence of advanced computing and biology is rewriting the economics of drug discovery.
So far in 2026, Nvidia and Eli Lilly stocks have lagged broader enthusiasm for AI. Cramer argues that disconnect could create long term opportunity for patient investors.


Alphabet 和 NVIDIA 正在深化雙方長達十年的合作關係,以推動智能體人工智慧、機器人、藥物研發等領域的發展。


此次合作涉及深度協同工程,包括整合平台、開源框架和託管服務。


✅ Google Cloud 是第一批將 NVIDIA Blackwell 平台移轉到雲端的平台之一。


✅ Google 分散式雲端利用 NVIDIA Blackwell 上的 NVIDIA 機密運算,協助企業在本地運行 Google Gemini。


✅ NVIDIA AI 平台已整合到 Vertex AI、Cluster Director 和 Google Kubernetes Engine 中。


✅ 將 NVIDIA Nemotron 系列開放式模型引入 Vertex AI Model Garden。


觀看完整影片以了解更多資訊 ➡️ https://nvda.ws/3LerJhj

Alphabet and NVIDIA are expanding their decade-long partnership to advance agentic AI, robotics, drug discovery, and more.
This involves deep co-engineering with integrated platforms, open-source frameworks, and managed services.
✅ Google Cloud is one of the first to bring the NVIDIA Blackwell platform to the cloud.
✅ Google Distributed Cloud using NVIDIA Confidential Computing on #NVIDIABlackwell for enterprises to run Google Gemini on-premises.
✅ Integration of the NVIDIA AI platform across Vertex AI, Cluster Director and Google Kubernetes Engine.
✅ Bringing the NVIDIA Nemotron family of open models to Vertex AI Model Garden.
Watch the full video to learn more ➡️ https://nvda.ws/3LerJhj



BREAKING: China has restricted purchases of Nvidia's H200 AI chips and will only approve purchases of the chips "under special circumstances," per The Information.


黃仁勳:加速運算取代CPU成為超級運算的核心

英偉達執行長黃仁勳在美沙投資論壇上發表講話,強調了全球運算領域的歷史性轉變。他指出,六年前,CPU還佔據全球頂級超級電腦90%的份額,而如今這一比例已不足15%。以GPU為主導的加速運算扭轉了這一局面,其份額從10%增長到近90%,標誌著高效能運算和資料密集型雲端工作負載已徹底從通用CPU轉向專用加速運算,這是一個清晰的轉折點。


Nvidia CEO sends strong message on Taiwan Semiconductor

What Jensen Huang said touches the heart of the AI buildout.


buildout."the rapid buildout of digital technology" strong message. Nvidia CEO sends strong message on Taiwan Semiconductor. What Jensen Huang said touches the heart of the AI buildout.

英偉達CEO就台積電發出強硬訊號 黃仁勳的演講直擊人工智慧建設的核心。



strong message is a clear, forceful, and impactful communication that powerfully conveys a specific idea, point, or opinion, leaving a significant effect on the audience's beliefs or feelings, often used in contexts like politics, art, or social commentary. It's distinct from a weak message because it's deliberate, credible, and difficult to ignore, aiming to persuade, motivate action, or highlight the importance of something. 


buildout
/ˈbɪldaʊt/
noun
North American English
  1. the growth, development, or expansion of something.
    "the rapid buildout of digital technology"


📹:美沙投資論壇/YouTube

📢Jensen Huang Says Accelerated Computing Has Replaced CPUs at the Core of Supercomputing

Speaking at the US–Saudi Investment Forum, Nvidia CEO Jensen Huang highlighted a historic shift in global computing, revealing that CPUs once powered 90% of the world’s top supercomputers just six years ago, but now account for less than 15%. Accelerated computing, led by GPUs, has flipped that ratio, growing from 10% to nearly 90%, marking a clear inflection point where high-performance computing and data-intensive cloud workloads have moved decisively away from general-purpose CPUs toward specialized acceleration.

-

📹: U.S - Saudi Investment Forum/YouTube


AI companies and businesses implementing AI face significant issues across ethical, financial, technical, and operational domains
. These range from high failure rates in enterprise projects to large-scale societal concerns. 
Key Issues for AI Companies
Financial & Business Operation Issues
  • High Failure Rate for Enterprise AI Projects: An MIT study indicated that 95% of enterprise generative AI pilots fail to provide a measurable return on investment (ROI).
  • AI Bubble Concerns: Market analysts have raised concerns that many AI tech firms are overvalued, potentially existing within an "AI bubble" with valuations stretched thin since the dot-com era.
  • Unsustainable Cost and Business Models: Many startups act as "wrappers" around major AI models (like OpenAI's API) and struggle with high operational costs (e.g., GPU usage) relative to their revenue, leading to fragile business models.
  • Vendor Lock-in and Supply Chain Reliance: The entire AI industry is heavily reliant on a single point of failure in the supply chain: a few chip manufacturers like Nvidia. Geopolitical disruptions or manufacturing delays could stall progress across the entire ecosystem.
  • Talent Shortages: There is a significant shortage of skilled AI talent, making acquisition and retention a major hurdle for companies. 
Ethical & Societal Issues
  • Bias and Discrimination: AI models can perpetuate and amplify real-world biases if trained on incomplete or unbalanced datasets, leading to discriminatory outcomes in areas like hiring or lending.
  • Workforce Disruption: Automation is rapidly changing job markets, with roles in customer service, manufacturing, and data entry being heavily impacted. This leads to challenges in retraining and upskilling the existing workforce.
  • Exploitation of Workers: AI companies often rely on underpaid contract workers, particularly in the Global South, to train models by reviewing highly traumatic and graphic content, which has led to PTSD and lawsuits.
  • E-Waste and Environmental Impact: Training large AI models requires immense computational power and energy, resulting in a high carbon footprint and contributing to a growing e-waste problem as hardware quickly becomes obsolete.
  • Lack of Accountability and Governance: The lack of standardized best practices and clear legal frameworks means there is often no clear accountability when AI systems cause harm or make critical errors. 
Technical & Security Issues
  • Data Privacy and Security Risks: AI systems ingest massive amounts of data, raising concerns about accidental exposure of sensitive information, intellectual property risks, and potential data breaches.
  • Hallucinations and Reliability: Large language models (LLMs) can generate convincing but factually incorrect information ("hallucinations"), which is a major problem in industries requiring accuracy, such as healthcare or finance.
  • Vulnerabilities to Attacks: AI systems are susceptible to new types of cyberattacks, including prompt injection, data poisoning, and the use of AI to create sophisticated deepfakes for fraud.
  • Scalability and Infrastructure Constraints: Companies struggle to manage the operational complexity and infrastructure needs (e.g., access to high-performance GPUs, energy supply) required to scale AI models effectively. 


人工智慧公司和實施人工智慧的企業在倫理、財務、技術和營運等各個領域都面臨許多挑戰。這些挑戰涵蓋了企業專案的高失敗率以及大規模的社會議題。


人工智慧公司面臨的關鍵問題


財務和業務營運問題


企業人工智慧計畫高失敗率:麻省理工學院的一項研究表明,95%的企業生成式人工智慧試點計畫未能帶來可衡量的投資報酬率 (ROI)。


人工智慧泡沫擔憂:市場分析師擔憂許多人工智慧技術公司估值過高,可能處於「人工智慧泡沫」之中,其估值自網路泡沫時期以來一直處於低位。


成本和商業模式不可持續:許多新創公司充當主流人工智慧模型(例如 OpenAI 的 API)的“包裝器”,但其營運成本(例如 GPU 使用成本)相對於收入而言過高,導致商業模式脆弱。


供應商鎖定和供應鏈依賴:整個人工智慧產業嚴重依賴供應鏈中的單一故障點:少數幾家晶片製造商,例如英偉達。地緣政治動盪或生產延誤都可能阻礙整個生態系統的發展。


人才短缺:熟練的人工智慧人才嚴重短缺,這使得人才的取得和留用成為企業面臨的主要挑戰。


倫理和社會問題


偏見與歧視:如果人工智慧模型使用不完整或不平衡的資料集進行訓練,則可能會延續和放大現實世界中的偏見,從而導致招聘或貸款等領域出現歧視性結果。


勞動力市場變革:自動化正在迅速改變就業市場,客戶服務、製造業和資料輸入等職位受到嚴重影響。這給現有員工的再培訓和技能提升帶來了挑戰。


剝削工人:人工智慧公司通常依賴低薪合約工,尤其是在全球南方國家,讓他們審查高度創傷性和畫面感極強的內容來訓練模型,這導致了創傷後壓力症候群(PTSD)和訴訟。


電子垃圾和環境影響:訓練大型人工智慧模型需要龐大的運算能力和能源,造成高碳排放,並隨著硬體快速過時而加劇電子垃圾問題。


缺乏問責制和治理:由於缺乏標準化的最佳實踐和明確的法律框架,當人工智慧系統造成傷害或出現重大錯誤時,往往缺乏明確的問責機制。


技術和安全問題


資料隱私和安全風險:人工智慧系統會處理大量數據,引發人們對敏感資訊意外洩露、智慧財產權風險和潛在資料外洩的擔憂。


幻覺和可靠性:大型語言模型(LLM)可能會產生看似可信但實際上錯誤的資訊(「幻覺」),這在醫療保健或金融等需要高度準確性的行業中是一個重大問題。


易受攻擊性攻擊:人工智慧系統容易受到新型網路攻擊,包括快速注入、資料投毒以及利用人工智慧創建複雜的深度偽造影片進行詐欺。


可擴展性和基礎設施限制:企業難以有效擴展人工智慧模型所需的營運複雜性和基礎設施需求(例如,高效能GPU的存取、能源供應)。

AI demand is surging, but geopolitical risk is reshaping how chips are sold.
According to Reuters, NVIDIA is requiring full upfront payment from Chinese customers ordering its H200 AI chips, with no refunds or order changes, as Beijing’s approval process remains uncertain.
What’s behind the move:
• Unclear Chinese regulatory approval for H200 imports
• Strong demand, with orders exceeding available inventory
• Nvidia shifting financial risk from itself to customers
• A response shaped by past losses from sudden export bans
The policy highlights Nvidia’s delicate balancing act—capturing massive Chinese demand while navigating evolving U.S.–China tech controls.
As AI chips become strategic assets, will payment terms and geopolitics matter as much as performance?
Follow Mediablizz for more updates on AI, tech innovation, and business.

人工智慧需求激增,但地緣政治風險正在重塑晶片的銷售方式。 根據路透社報道,由於北京的審批流程仍不明朗,英偉達要求中國客戶預付H200人工智慧晶片的全部款項,且不予退款或更改訂單。 此舉背後的原因: • H200晶片進口的中國監管核准尚不明朗 • 強勁的需求,訂單量超過現有庫存 • 英偉達將財務風險從自身轉移給客戶 • 此舉是吸收了以往因突然出口禁令造成的損失後採取的應對措施 這項政策凸顯了英偉達在滿足中國龐大需求的同時,也要應對不斷變化的中美技術管控政策所帶來的微妙平衡。 隨著人工智慧晶片成為戰略資產,支付條款和地緣政治因素是否會像晶片性能一樣重要? 關注Mediablizz,獲取更多關於人工智慧、科技創新和商業的最新資訊。

Nvidia Is Now Worth $5 Trillion as It Consolidates Power in A.I. Boom

The A.I. chip maker has become a linchpin in the Trump administration’s trade negotiations in Asia.

Listen to this article · 9:05 min Learn more

Source: Factset.

Keith Collins/The New York Times

As Jensen Huang, the chief executive of the chip making giant Nvidia, traveled to Asia to meet with President Trump on Wednesday, his company’s value topped $5 trillion. It was a show of wealth that would have been unthinkable a few years ago.



// AI教主黃仁勳前天接受了一次訪談,針對最近關於AI的質疑,發表了他的看法。

我為大家劃出五個重點:
第一:AI不是泡沫,是工業革命
首先,黃仁勳為我們描繪了一個極其誘人的AI世界。
他解釋,當前的需求爆發,源於一個「雙重指數」現象:AI模型變得越來越複雜,需要指數級增長的算力;同時,因為模型變得足夠聰明(例如從簡單問答進化到能推理和研究),市場對它的需求也呈指數級增長。
這個完美的正向循環,讓他堅信這不是泡沫。這是一場基於真實需求的「數萬億美元的建設」,一場新的工業革命。
為了讓這個故事更具體,他舉了個例子:Nvidia內部超過四萬名工程師,如今100%都在使用一款名為Cursor的AI編碼工具,生產力得到了「驚人的」提升。
第二:殘酷的商業與物理現實
黃仁勳親口承認,AI基礎設施並不是像鋪設鐵路或光纖那樣,一次投入,就能享用數十年。
他直言不諱:「每年都會更換資料中心裡的每一顆晶片。」
這句話揭示了一個殘酷的真相:整個AI產業被鎖定在一個永無止境、極其昂貴的升級循環中。
這就像你買了一台印表機,但廠商每年都會推出一款性能提升十倍的「專用墨水匣」,並透過軟體讓舊墨水匣無法使用。你為了保持競爭力,除了不斷投入巨資升級,別無選擇。
整個AI產業,正在變成一個為Nvidia持續輸血的資本黑洞。而這場競賽,正在撞上物理的牆壁——能源。對此,黃仁勳的解決方案更加驚人:他呼籲資料中心應該「自備電力」,直接在旁邊興建天然氣甚至核能發電站。
第三:「循環交易」不是Bug,而是核心戰略
當被問及Nvidia對外的一系列投資時(例如投資OpenAI、xAI、CoreWeave等),他非但沒有迴避,反而興奮地表示:「我唯一的遺憾,就是我們沒有投得更多。」
他甚至毫不掩飾對馬斯克的欣賞:「幾乎所有伊隆(Elon)參與的事情,你都會想參與其中。」
這揭示了他真正的野心。Nvidia的目標,絕不僅僅是成為AI生態中的「軍火商」。他要讓Nvidia成為整個生態的「中央銀行」和「心臟」。
他不僅要賣給你最貴的鏟子,他還要投資你的金礦,甚至借錢給你去買他的鏟子。他在AI金字塔的每一層都插上自己的旗幟,其目的只有一個:確保沒有人可以繞過Nvidia。
第四:對手AMD?只是生態系中的一個註腳
談到競爭對手AMD與OpenAI的交易時,他說:「他們居然為了拿到訂單,『送出』了10%的公司?」
這句話與其說是在酸,不如說是在彰顯Nvidia的絕對統治力。他想表達的潛台詞是:
「AMD的晶片可能很強,但我有整個生態系統。我不需要送出股權,因為客戶別無選擇;而AMD需要用股權去交換市場准入證。」
他強調,Nvidia賣的不只是晶片,而是「全棧AI基礎設施」。他等於告訴市場:光有晶片沒用,你需要我全套的硬體、軟體、網路,才能搭建起一座真正的AI超級工廠。
第五:地緣政治是我的「護城河」
當被問及中美AI競賽時,他表示:「整體來說,我們並沒有領先很多。」他指出,中國在能源、基礎設施和AI應用層的發展速度非常快。
這是一步絕妙的棋。他巧妙地將Nvidia的商業利益,與美國的國家安全捆綁在一起。
他等於是在告訴華盛頓的決策者:「你們需要我。你們需要Nvidia這個強大、專斷甚至壟斷的實體,來贏得這場競賽。任何試圖削弱我的舉動,都將威脅到美國的領導地位。」
結語:一場名為「黃仁勳」的豪賭
黃仁勳既是那個描繪了AI天堂的夢想家,也是這個時代的規則制定者。
這究竟是天才的遠見,還是史上最大的豪賭?我們不知道。
但可以肯定的是,今天,當你買入任何一檔追蹤S&P 500的ETF,當你投資任何一家資料中心,甚至當你把錢投入私募信貸基金時,你都在為這場豪賭下注。
整個世界的投資者,除非你刻意避開所有與AI相關的資產,否則都已經被綁上了Nvidia這艘火箭。
而火箭的總設計師,只有黃仁勳一人。
對黃仁勳的「帝國藍圖」意猶未盡?//
兩個星期前,我曾就他的另一場兩小時訪談寫過一篇深度分析。當時的論點,亦非常值得了解更多。文章完全免費,歡迎點擊重溫。
- KP

沒有留言:

網誌存檔